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ABSTRACT 
 

The accuracy and precision of two key field measurements used to produce 
estimates of marine mammal abundance from shipboard surveys – the horizontal angles 
from the ship's trackline and the radial distances to the animals in the water – were 
assessed. Measurements were made from two ships, the McArthur and the David Starr 
Jordan, under field conditions. Horizontal angles were measured using angle rings and 
radial distances were measured with reticles in 25X binoculars. Distances to targets were 
measured simultaneously using radar and reticles. Rounding of horizontal angles in field 
survey data to 5 degree increments, and of reticle values to both 0.2 and 0.5 reticle 
increments, was indicated by autocorrelation tests. The rounding was eliminated by 
"smearing" the original horizontal angles over ± 2 degrees and the original reticles over ± 
0.05 reticles. Replicated measurements of angles in the radar database indicated 95% of 
angle measurements to a single target were expected to be within ± 3 degrees of one 
another. The precision of radial distances measured using reticles was inversely 
proportional to target distance. The radial distances calculated using the formula 
proposed by Lerczak and Hobbs (1998) were a closer fit to distances from radar than 
alternative formulas, but exhibited a slight tendency to underestimate distances to targets 
close to the horizon under field conditions. Adjusting reticle measurements for light 
refraction improved the fit to target distances by reducing this downward bias. A second 
adjustment corrected ship-specific responses to sea conditions at the time the reticles 
were used. 
 

INTRODUCTION 
 

The perpendicular distances to marine mammals from a ship's trackline can be 
used to estimate the mammals' density and abundance using line-transect methods 
(Buckland et al., 2001; Thomas et al., 1998). On ship surveys conducted by the 
Southwest Fisheries Science Center (SWFSC), two angular measurements are recorded,  
the horizontal angle between a mammal sighting and the trackline, and the vertical angle 
between the sighting and the horizon. The vertical angle is converted to a radial distance 
using a formula based on spherical geometry (Lerczak and Hobbs, 1998). The 
perpendicular distance is calculated by multiplying the radial distance by the sine of the 
horizontal angle. 
 

Biases in recording horizontal angles and radial distances can affect the 
distribution of perpendicular sighting frequencies, and hence the final estimates of 
density and abundance (Butterworth, 1982; Hammond, 1984). Barlow and Lee (1994) 
found evidence of rounding of horizontal angles by observers on surveys conducted prior 
to 1991 by the SWFSC. Butterworth (1982) developed an analytical "smearing" 
technique that added randomized terms to the original angle and distance measurements 
to improve the final estimates when the original measurements had been rounded in the 
field. Here we examine SWFSC survey data collected during 1998-2000, and a separate 
database of binocular versus radar measurements of distance at sea, for evidence of bias 
or inaccuracies in our field measurements. We compare alternative equations for 
calculating radial distance from binocular reticles and introduce: 1) a method using 
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autocorrelation to evaluate the sufficiency of data smearing; 2) minor corrections for the 
effects of refraction on distance measurements near the horizon using reticles or other 
angle-based devices; and 3) a final correction for ship-specific differences in distances 
obtained using reticles in 25X binoculars under field survey conditions. 

 
An independent scientific peer review of this work was administered by the 

Center for Independent Experts located at the university of Miami.  Responses to 
reviewers’ comments can be found in Appendix A.  

 
 

METHODS 
 

Three potential types of error in the calculations of perpendicular sighting 
distances were examined: rounding of horizontal angles, rounding of reticles, and 
absolute differences between binocular and radar measurements of radial distance. These 
provided empirical estimates of the precision and accuracy of radial sighting distances 
and of the precision of horizontal angle measurements. The accuracy of horizontal angle 
ring measurements apart from rounding was not explicitly examined in this study. 
 

The horizontal angle was typically measured using an angle ring marked to 1-
degree increments at the base of a binocular mounted on a pedestal. The angle ring was 
calibrated with an alidade on the ship's gyrocompass repeater. A pointer on the ring 
indicated the bearing to sightings relative to the ship's heading. The vertical angle was 
measured using a reticle scale in the binocular eyepiece. 
 

Two sources of data were used. The first was a series of field surveys of marine 
mammal populations in the eastern tropical Pacific Ocean during 1998 to 2000 that 
produced 4,307 on-effort sightings suitable for line-transect analysis (Kinzey et al., 1999; 
2000; 2001). Only sightings made forward of the ship's beam (between trackline angle 0 
and 90 degrees left or right) were classified as on-effort during these surveys. 
 

A second source of data was 1,606 paired measurements of the distances to 
targets from two ships using both radar and the reticles in 25X binoculars under a variety 
of sighting conditions. These measurements were recorded by the mammal observers 
during testing periods on shipboard surveys from 1990 to 1993. Most observers were 
tested on both ships. The target was generally the waterline of a small boat with a radar 
target set out for the purpose, but occasionally buoys or other floating objects visible to 
radar were used. Air temperatures, air pressures, and swell heights associated with the 
measurements were copied from the ship deck logs. Beaufort sea state and a motion code 
(upswell, downswell, trough) were additionally recorded. 
 
Horizontal Angles 
 

Most of the horizontal sighting angles on the field surveys were measured using 
angle rings on 25X binoculars (Table 1). Some sightings, however, were made using 
unaided eye or 7X binoculars and did not include angle ring measurements. The 25X and 
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non-25X datasets were evaluated separately for angle rounding effects by the following 
procedure. 
 

Frequency histograms of the sighting angles in 1-degree bins were produced, with 
equal angles left or right of the trackline combined into a single bin. Preliminary 
examination of these histograms indicated rounding spikes at 5-degree intervals. We used 
statistical tests of the difference between autocorrelation coefficients (Zar, 1984) in the 
angle frequencies to assess the degree of rounding at 5-degree lags versus lags 1 through 
9, testing one lag at a time. The test statistic, Z', expected to be normally distributed, was 
calculated as: 
 

                                      Z' = 
ln[(1+ r1 )/(1− r1 )]− ln[(1 + r2 ) /(1 − r2 )]

2 * 1/(n1 − 3) + 1/(n2 − 3)
, (1) 

 
where 
r1 = autocorrelation coefficient at lag to be tested against 5 degree lag, 
r2 = autocorrelation coefficient at 5 degree lag, 
n1 = number of angles used to calculate r1, and 
n2 = number of angles used to calculate r2. 
 

Z' was compared to the normal distribution in a one-tailed test of the null 
hypothesis that the correlation coefficient of the 5-degree lags was not greater than the 
coefficient for the tested lag. A significant Z' value indicated that the autocorrelation at 
the 5 degree lag was greater than the tested lag and therefore rounding was present. The 
test was applied separately for each value of lag. 
 

The sighting angles were then smeared over several ranges following the method 
of Butterworth (1982). For each sighting a smeared angle, Sρ, was calculated as: 
 
                                                           Sρ = | ρ + υ ∆ρ |, (2) 
where 
ρ = original angle recorded in the field, 
υ = a uniform random number between -0.5 and 0.5, and 
∆ρ = the range of angles to be smeared over. 
 
Absolute values of  ρ + υ ∆ρ  were used to prevent negative angles as a result of 
smearing near the trackline. 
 

The frequencies of angles produced by Eq. 2 were tested for rounding effects 
using Eq. 1. The statistics in Eq. 1 were calculated from mean values of 20 runs of Eq. 2 
applied to each sighting angle. In each run the smeared angle, Sρ, was rounded to the 
nearest integer value before calculating the frequency distribution. 
 

Equation 2 randomly distributes a portion of the original angles, dependent on ∆ρ, 
into adjacent frequencies ± 1/2 ∆ρ from the original angle.  Thus the outermost bins for 
each level of smearing received only half as many redistributed angles as did the inner 
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bins. Some smeared 90 degree angles were redistributed to angles greater than 90 
degrees, making the sightings off-effort (not to be used in estimating abundance) by our 
field criteria. This reduction in the original data is reasonable assuming that a final spike 
at 90 degrees in the field data indicates observers rounded some angles into the on-effort 
zone that should have been recorded as off-effort. 
 

For the 25X measurements, ∆ρ values tested were 2, 3, 4, 5, 10, and 15 degrees  
(±1, ±1.5, ±2, ±2.5, ±5 and ± 7.5 degrees to either side of the original angle, 
respectively). The non-25X measurements were smeared over these ranges, and also over 
±10 and ±15 degrees. 
 

The radar database was used to assess the precision of horizontal angle 
measurements by comparing the angles assigned by observers in replicated measurements 
of a single target. A total of 1572 individual angle measurements were made to 517 
targets, of which 467 targets were measured three or more times simultaneously by 
different observers (Table 2). The mean of the 467 standard deviations of these replicated 
measurements represented the variability in using horizontal angle rings. 
 
Vertical Angles 
 

Radial distances on the field surveys were typically measured with reticles in 25X 
binoculars (Table 1). Each reticle in the 25X binoculars used by the SWFSC spans 
0.0771 degrees (0.00135 radians; Kinzey and Gerrodette, 2001). The scale is marked to 
every 0.2 reticles between 0 and 2 reticles and to every half reticle from 2 to 20. Reading 
reticle values to the inscribed precision would thus result in two levels of rounding, one at 
every 0.2 reticles for measurements less than two reticles and the other at every 0.5 
reticles for measurements greater than two reticles. 
 

The effect of rounding reticles on distance measurement is most pronounced at 
small reticle values near the horizon. Observers are instructed to record the more distant 
sightings, those made at less than 2 reticles, to the nearest 0.1 reticle. The distance 
between an object located at 0.1 reticle and one at 0.2 reticles from a 10.7 m platform is 
1.1 km (0.6 nm). By comparison, the difference between 2.0 and 2.1 reticles is less than 
0.1 km and between 20 and 20.1 reticles the difference is less than 2 m. 
 

Rounding of reticles was evaluated similarly to the rounding of horizontal angles. 
Reticle frequencies from the 1998-2000 surveys were binned at 0.1 reticle intervals. Two 
potential levels of rounding, at every 0.2 reticles for measurements ≤ 2 reticles, and at 
every 0.5 reticles for all reticle measurements, were tested against lags 0.1 to 0.9.  Tests 
of the correlation coefficients of spikes in the field data using Eq. 1 were performed. The 
data were then smeared using Eq. 2 and the results retested. 
 
Converting Reticle Values to Distances 
 

Lerczak and Hobbs (1998) provide exact theoretical formulas for converting 
vertical angles to radial distances. Alternative formulas that give equal numerical results 
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are given in Gordon (1990), Jaramillo et al. (1999) and Buckland et al. (2001). The 
formulas require two angle terms when binocular reticles are used as the measuring 
device. The angle from the horizon down to the target (θ in Lerczak-Hobbs formulation) 
is measured using reticles, and a second angle (α ) above the horizon to the horizontal 
tangent is calculated from observer height. For brevity, we will refer to θ as the target 
angle and to α as the above-horizon angle. Both angles, in radians, are summed to 
calculate distance, DLH, to the target in kilometers as follows: 
 

                                 DLH = he * sin(θ + α) - RE
2 − (he * cos(θ +α ))2 , (3) 

where 
θ = angle below the horizon, in radians, 

α = angle from horizontal tangent to horizon = atan( 2REh + h2 / RE) , 
h = eye height above sea level, in km, 
RE = radius of earth (= 6371 km), 
he = RE + h. 
 

The distance to the horizon is given by the square root term ( 2REh + h2 )  in the 

definition of α. 
 

Target distances in the radar database ranged between 0.33 and 10.35 km (the 
horizon was approximately 11.6 km). In addition to Eq. 3, we tested several other 
formulas for converting vertical angles to distances that produce different numerical 
results. These are given in Smith (1982), Buckland et al. (1993), and Bowditch (1995) 
(Table 3). Reticles below the horizon for each target were converted to distances using 
the various formulas and plotted against the distances measured with radar. 
 

Once the best distance formula was identified, a number of adjustments or 
modifications to reduce bias were explored. The improvements achieved using the 
adjusted distances were compared visually by plotting and statistically by using minimum 
mean squared errors or, for the final adjustments, the small-sample version of Akaike's 
Information Criterion (AICc; Burnham and Anderson, 1998). 
 

The precision of 25X measurements of radial distance was assessed in two ways, 
one that included bias (accuracy) and one that did not (measurement error). Variance of 
the distances from reticles increased with target distance, suggesting errors were 
multiplicative rather than additive. An approximate 95% confidence interval for a given 
distance, D, was D/P for the lower and D*P for the upper bounds, where 
 
                                                          P = exp(1.96*σ), (4) 
 
and σ = standard deviation of the logarithm of distance, estimated as described below. 
 

One estimate of σ in Eq. 4 was similar to the method used in determining 
precision for horizontal angles. Three or more reticle measurements were made to 502 



 

6 

separate targets (Table 2). This first estimate of σ was the mean of the 502 standard 
deviations of the logarithms of distances from reticles to a single target, s1, where: 
 

                                       s1 = 

n dLH, j
2 − ( dLH, j

j
∑ )2

j
∑

n(n −1)

 

 

 
 

 

 

 
 

1/ 2

i =1

502

∑ / 502 , (5) 

with 
n = the number of repeated measurements (3 - 6) to a single target, and 
dLH,j = ln(DLH) for the jth observation, j = 1, . . ., n. 
 

This calculation of precision indicates the variability of repeated measurements to 
a target, but not any systematic bias that would cause the mean of those measurements to 
differ from the true distance. s1  will overestimate precision to the extent that systematic 
errors result in E(DLH) not equaling D. It represents the maximum precision potentially 
attainable using unbiased reticle measurements, given the variability observed in 
simultaneous, replicated measurements under field conditions. 
 

The second method of calculating σ incorporated bias as well as variability. In 
this method, σ in Eq. 4 was represented by the root mean squared error between 
logarithms of distances from reticles and radar, s2, where: 
 

                                          s2(including bias) = 
(d2,k − dk )2∑

m
, (6) 

 
and 
m =   total number of paired reticle and radar measurements, 
d2,k = logarithm of distance from reticles (dLH or its adjusted values, 

 see below) for the kth measurement, k = 1, . . ., m, and 
dk = logarithm of distance from radar for the kth measurement. 
 

Confidence intervals based on the method of estimating σ  by Eq. 6 were wider 
than those using Eq. 5. The difference between the two is an indication of the amount of 
total variability in reticle measurements that could be due to a biased rather than random 
component. 
 
Correcting Distances Based on Refraction 
 

Equation 3 assumes that light travels in straight lines. It does not account for 
possible bending due to environmental conditions that can cause refraction (Lerczak and 
Hobbs, 1998). However, light rays curve when passing obliquely through an atmospheric 
density gradient (Fleagle and Businger, 1980; Leaper and Gordon, 2001). Atmospheric 
density typically decreases with height, which results in a decrease in the perceived 
vertical angle between a distant object at sea level and the horizontal tangent when the 
light arrives at an observer. The object is perceived higher relative to the observer than it 
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is based on geometry. This refraction effect is greatest at the horizon, so that although 
both horizon and target angles from the horizontal tangent decrease as a result of 
refraction, the relative angle between the object and the horizon increases. These 
combined effects on the target and horizon angles result in underestimation of the object's 
distance when a geometry-based formula such as Eq. 3 is used. 
 

The eye heights on the two ships used for the field surveys and the radar 
measurements were 10.4 m above the water for the McArthur and 10.7 m for the David 
Starr Jordan. On field surveys, the initial sightings to mammal schools are made as far 
from the ship as possible, resulting in very small sighting angles near the horizon. For an 
object at 0.1 reticle this angle, θ  (Eq. 3), is 0.000135 radians (0.0077 degrees). The 
above-horizon angle (α) for a 10.4 m high platform is 0.00181 radians (0.1037 degrees). 
Although Eq. 3 is the most geometrically accurate formula for angles of this small 
magnitude (Buckland et al., 2001), these near-horizon angles are also those for which 
refraction effects are expected to be greatest (Leaper and Gordon, 2001). 
 

Adjusting α only: Two methods incorporating the effects of refraction on reticle 
measurements were compared. The first was based on a correction to the above-horizon 
angle in Eq. 3, sometimes called the "dip of the visible horizon", based on average 
refraction effects. Bowditch (1995) provides an empirically based correction for α that 
accounts for the average effect of refraction on the dip of the visible horizon at sea. This 
standard correction, αB, in radians, is: 
 
                                                        αB = 1.76 hm

π
1080

, (7) 

where 
hm = observer height in meters above sea level. 
 
The π/1080 term converts Bowditch's original value in minutes of arc to radians. The 
angle of dip calculated from Eq. 7 is about 91% of the α value in Eq. 3. For a platform 
height of 10.4 m, this standard correction had the effect of raising the perceived horizon 
from 0.00181 to 0.00165 radians, or by a little more than 0.1 reticle. The target angle, θ, 
was unmodified in this method. 
 

Adjusting both α and θ: The second method of correcting Eq. 3 for refraction 
used air temperature, air pressure, and air temperature gradient to adjust both the above-
horizon and target angles. Air temperatures and pressures were recorded at the time the 
reticle vs radar measurements were made. Leaper and Gordon (2001) provide formulas 
for calculating refraction directly from these environmental data when the measurements 
are taken for objects at known distance from the observer. The method involves 
calculating the radius of the arc of the refracted ray of light, which is then used in 
calculating the angle of dip and the angle below the horizon. The first empirical term is 
atmospheric density, A (kg/m3): 
 

                                                                 A =
pβ
T

, (8) 
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where 
p = atmospheric pressure in Pa ( = 100 X mb = kg m-1 s-2), 
T = air temperature in degrees Kelvin, 
β = reciprocal of specific gas constant = 0.00348 m-2 s2 degrees1. 
 
Atmospheric density is then combined with the temperature gradient to calculate a 
"radius of curvature", r, of the refracted ray in meters: 
 

                                                   
1

r
=

εA

(1 +εA)T
(
∆T

∆h
+ gβ), (9) 

where 
ε = (refractive index of air - 1)/ standard density at sea level = 0.000227 m3 kg-1, 
∆T

∆h
 = change of temperature with change in height of the light ray =    

 approximately -0.0065 °K/m standard value, 
g = gravitational constant = 9.81 m/s2. 
 
The 1/r value is then used to calculate refraction-corrected horizon and target angles for 
Eq. 3, αc and θc, as follows: 
 

                                                        αc = atan 2hm(
1

1000RE

−
1

r
) , (10) 

and 

                                                                    θc ≈ θ +
1000D

2r
, (11) 

 
with all terms defined as for Eqs. 7 to 9 above. Under normal survey conditions, the true 
distance, D, to the target in Eq. 11 will be unknown, but it can be initially approximated 
using Eq. 3, and then iterated to the desired precision. 
 

The values of αc and θc were used in Eq. 3 to produce distances corrected for the 
effects of refraction using local air temperatures and pressures. An alternative adjustment 
method used the means of these temperatures and pressures over the entire study area in 
Eq. 6 to calculate a single r value in Eq. 9 representing average refraction for the time 
and region. 
 

Equation 9 uses a temperature gradient of -0.0065 degrees/meter, which is based 
on standard atmospheric conditions (Leaper and Gordon, 2001; Fleagle and Businger, 
1980). The actual gradient along the path the light ray traveled may differ from the 
standard one, and can be calculated from the observed refraction when true distance to 
the sighted object is known (Lehn, 1983; Fraser, 1979). Although either positive or 
negative gradients, indicating increasing or decreasing temperature with height, 
respectively, are possible near sea level, the typical pattern is decreasing temperature with 
height (Fleagle and Businger, 1980). Equation 9 produces no change in distances 
calculated from Eq. 3 at a temperature gradient of approximately -0.034 degrees/meter, 
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the gradient at which the decreasing temperature with height balances the effect of 
decreasing pressure to produce a constant density of air (refraction increases as 
temperature decreases and pressure increases). When air density is constant, no refraction 
occurs. Refraction will cause underestimates of distance from Eq. 3 as gradient becomes 
more positive from -0.034, and overestimates of distance for gradients more negative. 
 

We allowed ∆T/∆h in Eq. 9 to be an adjustable variable, and used the criterion of 
minimum logarithmic mean squared error between distances from reticles and radar 
(minimum s2

2 from Eq. 6) to determine the most likely gradient present during each 
series of measurements taken with the same air temperature and pressure on one day. 
Sixteen such series of measurements were made from the Jordan and 14 from the 
McArthur. These sets of measurements made under similar environmental conditions to 
targets over a range of distances produced an estimate of the temperature gradient for 
each day. This allowed us to estimate the expected effect of refraction on reticle 
measurements due to the average temperature gradient, as well as air temperature and 
pressure, in the region. 
 
Empirical Adjustment of α* 
 

An alternative, simple method of modifying Eq. 3 was to fit an α value for the dip 
of the horizon, α*, that produced the minimum root mean squared error for the logarithms 
of distances from reticles relative to radar (minimum s2, Eq. 6). This incorporated any 
differences, averaged over all target distances, between the theoretical calculations 
(geometry or refraction) and radar into a single term. 
 
Regression-based Adjustments to Distances from Reticles 
 

Two approaches using least-squares regression to adjust distances from reticles to 
those from radar were examined. One was numerical and did not use the refraction 
adjustments. The other was explanatory and attempted to account for variability 
remaining after refraction had been removed. 
 

Numerical approach. This approach adjusted the distances from reticles calculated 
using Eq. 3 to radar without attempting to model the physical process underlying the 
measurements. Correction factors were developed using either distance from radar, or 
expected vertical angle for the given distance from radar, to predict the observed distance 
or angle using reticles. Two sets of regression coefficients were thus obtained, producing 
two different adjustments. In each case, rearrangement of terms provided the correction 
yielding true distance from reticles. The results were compared in terms of the reduction 
in s2 between distances from reticles and radar that was achieved by each method. 
 

The first correction used logarithmic transformations of the distances from both 
reticles and radar to reduce heteroscedasticity. The distance from reticles was based on 
the height at which the measurements were taken (Eq. 3), implicitly assuming this height 
for the reticle measurements. The second numerical method adjusted the vertical angle 
before distance was calculated. The angle measured with reticles in this method was 
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regressed against the expected total angle, solved iteratively from Eq. 3 given DLH. This 
second set of coefficients was used to produce a correction independent of height. 
 

Both numerical correction methods were based on the simple regression: 
 
                                                  Y = b0 + b1 * X + b2 * ship, (12) 
where 

Y = 1) logarithm of distance calculated from reticles (dLH) in the first method; or 
2) reticle angle, θ, below the horizon in the second method, 

 
X = 1) logarithm of distance measured with radar (d) in the first method; or 2) 

expected angle below the horizon from Eq. 3 for the measured distance from 
radar in the second method, and 

 
ship = dummy variable (Jordan = 1, McArthur = 0). 

 
Models with and without the dummy variable for ship were compared using AICc. 
 

The first method used an antilog back-transformation to produce the correction 
from the log-log regression coefficients. Rearrangement of terms provided a corrected 
distance from reticles, Dc, from the logarithm of distance from reticles and Eq. 3 (dLH) as 
follows: 
 

                                Dc(k) = E(Xk) = exp[
dLH(k ) − b0 − b2 * ship − s 2 / 2

b1

] , (13) 

 
for the k = 1 to m paired measurements, where s2 was calculated as: 
 

                                      s2 = 
1

)]ship**([
1

2
210)LH(

−

++−∑
=

m

bdbbd
m

i
kk

. 

 
The s2/2 term in Eq. 13 is based on the property that if the logarithm of x is normally 
distributed with mean µ and variance σ2, the expected value of x is exp(µ + σ2/2). 
 

In the second method, the rearranged regression coefficients produced a modified 
angle, θm, as: 
 
                                                  θm = (θ - b0 - b2 * ship)/b1. (14) 
 
This adjustment was simpler than the distance-based correction in that no antilog bias 
correction term (s2/2 in Eq. 13) was required. The modified reticle angle from Eq. 14 was 
then used in Eq. 3 to calculate corrected distances from reticles. Note that the b 
coefficients in Eqs. 13 and 14 have different values. 
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Explanatory approach.  This approach used regression to produce a model of 
factors influencing reticle measurements from the two ships after refraction had been 
accounted for. Ship, Beaufort sea state, swell height, and a relative motion code (upswell, 
downswell, trough) were recorded during the paired radar and reticle measurements. 
Distances from reticles calculated using Eq. 3 were adjusted for refraction based on 
average temperature and pressure and the fitted gradient. Then the ratio of distance from 
reticles adjusted for refraction to distance from radar was predicted using the additional 
explanatory variables.  Twenty-four linear models using combinations of these variables 
to predict the reticle/radar distance ratio were ranked based on minimum AICc score. The 
full model including all variables for the ratio, R, of refraction-corrected distance from 
reticles to distance from radar, was: 
 
                       R = b0 + b1v + b2f + b3fv + b4m1 + b5m2 + b6w + b7fw + b8vw, (15) 
 
where 
v = vessel category (1 = Jordan, 0 = McArthur) 
f = Beaufort sea state (continuous) 
m1 = motion category (1 = trough, 0 = downswell, upswell) 
m2 = motion category (1 = upswell, 0 = downswell, trough) 
w =swell height (continuous, in feet). 
 

With the ratio of refraction-corrected reticle to radar distance as the dependent 
variable, the explanatory variables in the regressions represented additional bias beyond 
the adjustments for refraction. As in the numerical approaches, rearrangement of terms 
provided an adjusted distance. A final model was selected from among those with the 
lowest AICc scores based on the trade-off between field data requirements and the size of 
the improvement obtained by using more complicated models to adjust distances from 
reticles. 
 
Comparisons between adjustment methods 
 

Different subsets of the entire database were adjustable by different methods. 
Thus a single comparison of all models given the same data by a likelihood method such 
as AIC was not performed. Instead the adjusted values were compared in terms of: 1) the 
proportional reduction in s2 between distance from reticles and radar that was achieved 
by the method: 2) absolute differences in the distances produced by the different 
adjustments; and 3) the possible overfitting of a particular dataset by the numerical 
methods compared to adjustments that were based on a physical model. 
 

RESULTS 
 
Horizontal Angles 
 

The frequency histograms for the 1998-2000 surveys using 25X and non-25X 
horizontal sighting angles both indicated some rounding to 5-degree increments (Figure 
1). In addition, large spikes were found at 5 and 10 degrees in sightings made with 25X 
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binoculars and at 45 degrees in non-25X sightings. More sightings were made at small 
angles than at large angles. The mean 25X sighting angle was 35.3 degrees and the mean 
non-25X angle was 35.8 degrees. These patterns of rounding were generally found in the 
angle frequencies reported by individual observers as well as for the sightings restricted 
to only those containing spotted or spinner dolphins, the species targeted by the surveys. 
 

Autocorrelations within the 5-degree lags were greater than for other lags in both 
the 25X and non-25X measurements, indicating rounding. The autocorrelation 
coefficients for the 5 degree lags were higher (Figures 2a, 2b) and the Z' tests indicated 
these differences were significant. For both 25X and non-25X angles, smearing over ±2 
degrees (∆ρ = 4) was sufficient to remove the rounding effects (Tables 4, 5). 
 

The effect of increasing the range of the smearing was to increase the overall 
autocorrelation between lags as well as smooth over the differences between lags (Figure 
2). The predominant feature of the non-25X histogram, the spike at 45 degrees (Figure 
1b) continued to be visible as a central hump in the frequency distribution until the data 
were smeared to ±15 or ±20 degrees. This level of smearing was essentially randomizing 
the data.  Since the objective of removing the repeating spikes was achieved by ±2 
degrees of smearing, this was chosen as the optimal level of smearing for the non-25X 
sightings as well. 
 

The mean standard deviation of the horizontal angle measurements to a common 
target in the radar target database was 1.5 degrees. This indicates that for unbiased 
measurements, an interval ± 3 degrees of the measured angle will contain the true angle 
approximately 95% of the time. 
 
Reticle Angles and Distance Conversion 
 

Reticles were rounded at two different intervals in the field surveys, at every 0.2 
reticles for measurements ≤ 2 reticles and every 0.5 reticles when all measurements were 
considered (Figures 3, 4, Tables 6, 7). The rounding at 0.2 reticles was eliminated by 
smearing over ± 0.05 reticles (∆ρ = 0.1). The half-reticle rounding was eliminated by 
smearing ±1.5 reticles. 
 

In the paired radar and reticle measurements, reticle readings fell rapidly with 
increasing distance to the target (Figure 5). The reticle values assigned by observers to 
the radar targets ranged from 0 (the horizon) to 20.5 reticles. Four of the 1606 
measurements were assigned reticle values of zero, and two were assigned reticles less 
than 0.1, normally the minimum value used on the field surveys (observers are instructed 
to wait until mammals are 0.1 reticles from the horizon or closer, as further distances 
cannot be adequately discriminated using 25X reticles). These six nonstandard 
measurements were not used in subsequent analyses. 
 

Twenty-four measurements made from the McArthur on one day were anomalous. 
These formed a cloud of overestimated target distances between 1 and 4 km and were 
visibly distinct from the general pattern. They were collected heading into the swell 
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during Beaufort 5 conditions. One hundred and eleven measurements made from the 
McArthur on other days under these conditions did not display this pattern of 
overestimated distances. There appears to have been a recording error for these data, and 
along with the six points already mentioned, they were not included in subsequent 
analyses. This left 1,576 paired measurements of distance using reticles and radar. 
 

Equation 3 provided the best fit of reticles against radar among the formulas 
tested (Fig. 6). The biases evident in the fits of the Smith 1982 (Fig. 6a) and Buckland 
1993 (Fig. 6b) formulas match those discussed from a theoretical perspective in Lerczak 
and Hobbs (1998). The Bowditch 1995 formula underestimated distances (Fig. 6c). 
 

Although Eq. 3 produced distances from reticle measurements that agreed well 
with radar, there was a slight tendency to underestimate distances to targets near the 
horizon (Fig. 6d). For the farthest targets, distance was underestimated by about 10%. 
This underestimate was not evident in reticle measurements of targets closer than 5 - 6 
km. 
 

A difference between ships in recording reticles for targets near the horizon was 
apparent, with measurements made from the Jordan closer to expectations than those 
from the McArthur (Fig. 7). Distances to targets near the horizon were underestimated 
from both ships, but the underestimate from the McArthur was more pronounced. The 
mean target distance recorded for each of reticles 0.1 to 0.5 was greater on the McArthur 
than on the Jordan (Table 8). Yet the observation platform on the McArthur was lower, 
so by geometry the distances for each reticle should be less than for the Jordan. A two-
tailed t-test, allowing unequal variances, of the differences between means for the ratios 
of Eq. 3 distance to radar for the two ships had a p-value of 0.02. The Jordan mean 
distance was 97.6% of radar and the McArthur was 95.8%. The frequency distribution of 
the ratios of Eq. 3 measurements against radar displays the difference between ships that 
is summarized in the t-test (Fig. 8). 
 

The mean standard deviation of the logarithms of replicate measurements of 
distance from Eq. 3 to a single target in the radar data (s1 from Eq. 5, which is precise but 
biased to the extent the expected mean of distances from reticles do not equal true 
distances) was 0.0719. This 0.0719 value corresponds to a 95% confidence interval of 
between 0.87 and 1.15 km for a target at 1 km, and between 6.95 and 9.21 km for a target 
at 8 km (Eq. 4). Measurements from the Jordan were more precise than those from the 
McArthur (s1 =  0.0683 versus 0.0767, respectively). These values serve as best-case 
estimates of the precision possible from reticle measurements under field survey 
conditions once bias has been removed. 
 

Table 9 lists the variability including bias (s2 from Eq. 6) of the various methods 
of adjusting distances from Eq. 3 compared to radar. The s2 value of the unadjusted 
distances from Eq. 3 for the combined dataset was 0.1227 (Method #31 - Table 9). The 
Jordan value was 0.1002 and the McArthur value was 0.1482. Different subsets of the 
data were adjustable using the alternative methods – some adjustments produced 
undefined values for very small reticle angles, for instance. The ratio of adjusted to 
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unadjusted distances from reticles using each method is listed in the table along with the 
unadjusted variability and the number of measurements that produced a numerical result 
for each adjustment method. 
 
Correcting Distances from Reticles Based on Refraction 
 

Adjusting α only: The refraction-adjustment method of substituting αB (Eq. 7) for 
the above-horizon angle without a corresponding adjustment to the target angle 
overcorrected the downward bias of Eq. 3 relative to radar. It produced a larger error (s2) 
than the unmodified equation for the Jordan (Method #23 - Table 9), and was undefined 
for angles of 0.1 reticle (Figure 10a). Although the αB values were comparable to the αc 
produced using Eq. 10 (see below), the lack of a corresponding increase in target angle, 
θc (Eq. 11), resulted in Eq. 3 becoming the square root of a negative number when αB 
was used with reticle values less than 0.12 from a 10.4 m platform. 
 

Adjusting both α and θ: Adjusting α and θ in Eq. 3 for local refraction effects (αc 
and θc in Eqs. 10 and 11, respectively) reduced the near-horizon downward bias (Fig. 9a) 
and improved the fit of distances from reticles to those from radar. The root mean 
squared error (s2) for the combined ships was 0.1160 using the standard temperature 
gradient (Method #25 - Table 9), 95% of the value for the unadjusted distances. The 
transformed dip values, αc, using local air temperatures and pressures ranged between 
0.00165 and 0.00169. The target angles, θc, were increased relative to θ by approximately 
10-8 radians. The effects of these small increases in vertical angles on the calculated 
distance were most evident for targets near the horizon. 
 

Air temperatures and pressures during the measurements ranged between 15.7 and 
31.5 ºC and between 1008 and 1019 mb, respectively. Both ranges are typical for the 
eastern tropical Pacific from July to December (da Silva et al., 1994). These produced 1/r 
values between 2.38 x 10-8 and 2.67 x 10-8 when combined with the standard temperature 
gradient of -0.0065 degrees/meter. Figure 9b shows the effect this range of 1/r values had 
on correcting distances from reticles for refraction from a 10.4 m platform. By 8 km, the 
uncorrected distance from Eq. 3 varied between about 93% and 94% of the corrected 
value. The approximately 1% difference attributable to local conditions suggested a 
standard correction based on average conditions would provide most of the improvement 
obtainable using local temperatures and pressures (see also Leaper and Gordon, 2001). 
 

The adjustments for refraction using locally measured temperatures and pressures 
had a larger effect on the McArthur than on the Jordan (Table 9). Refraction effects were 
insufficient to account for all of the underestimate of target distances on the McArthur, 
however.  Extreme air temperatures below 0 ºC, or pressures above 2,000 mb (the normal 
maximum air pressure at sea level worldwide is 1040 mb, averaging 1013 mb - Fleagle 
and Businger, 1980) would be required to produce refractive effects sufficient to explain 
the underestimates of the size recorded from the McArthur. 
 

Using the average 1/r value of 2.48 x 10-8, based on mean temperatures and 
pressures and the standard temperature gradient from both ships to calculate an average 
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refraction effect reduced the error from the unadjusted values (Method #10 - Table 9). 
The value of s2 from Eq. 6 was 0.1114 for both ships combined. The downward bias of 
Eq. 3 was reduced (Fig. 10b), although measurements from the McArthur continued to 
underestimate true distance. Iterating Eq. 11 three times was sufficient to achieve 
convergence to a precision of 0.1 km. For example, the estimated distance at 0.1 reticle 
for a 10.7 m high platform changed from the unadjusted value of 7.98 km, to 8.66 km, to 
8.53, and then stabilized at 8.55 km. 
 

Although using either locally-measured or averaged air temperatures and 
pressures with the standard temperature gradient improved the fit of reticles to radar for 
both ships combined, this was not true when local temperatures and pressures were 
combined with the standard gradient for the ships individually. The root mean squared 
error of the adjusted McArthur measurements was improved (90% that of the unadjusted 
values, Method #27 - Table 9). The Jordan ratio (101%, Method #26 - Table 9), however, 
indicated a slight decrease in accuracy after the refraction adjustment. This may have 
been due to the use of the standard temperature gradient (∆T/∆h = -0.0065), discussed 
below. 
 

Estimating the local value of the ∆T/∆h term in Eq. 9 by allowing it to be an 
adjustable variable produced daily temperature/height gradients ranging from -0.05 to 
0.03 degrees/meter for the Jordan (16 series of measurements made on the same day, 
temperature and pressure, Table 10) and from -0.05 to 0.05 degrees/meter for the 
McArthur (14 series). Although the ranges of measured temperatures and pressures from 
the two ships were similar, 11 of the McArthur series fittings produced positive 
temperature gradients, while only 2 of the Jordan gradients were positive. The average 
gradient from the Jordan was -0.02 degrees/meter, while the McArthur average was 0.01. 
 

Because reticle measurements from the McArthur appeared to underestimate 
distances more than expected from refraction alone, fitting the gradient term to 
measurements made from the McArthur likely produced a positive bias in the estimated 
gradient, overfitting additional error than just the portion due to refraction. The Jordan 
average gradient of -0.02 is probably a better value for the average rate of change in air 
temperature in the first 10 m above the sea surface in the eastern tropical Pacific in July-
December than either the McArthur value, or the -0.0065 value based on a standard 
atmosphere. 
 

Using a temperature gradient of -0.02 degrees/meter with the mean measured 
temperature (25.2 deg) and pressure (1012.4 mb) in Eqs. 8 and 9 produced a 1/r value of 
1.27 X 10-8 instead of 2.47 X 10-8. This resulted in a smaller adjustment to distances from 
reticles than the standard gradient of  -0.0065. The Jordan's value of s2 using the -0.02 
gradient was 0.0980 (Method #29 - Table 9). The improvement achieved by estimating 
two parameters, gradient and σ2, from the Jordan's data over using the standard gradient 
(estimating only one parameter, σ2) was assessed using AIC. With s2

2
 as the maximum 

likelihood estimator of σ2 (Burnham and Anderson 1998, pg.48), ∆AIC was 44 using the 
-0.02 versus the  -0.0065 gradient, indicating substantial improvement using the -0.02 
degrees/meter gradient for the Jordan. 
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Using the local temperatures, pressures, and fitted temperature gradients for each 

daily series of measurements (16 sets of measured temperatures and pressures and fitted 
gradients) to adjust the Jordan reticle values produced an s2 of 0.091, lower than any of 
the s2 values achieved using the methods summarized in Table 9. This method of 
calculating the local temperature gradient would not be feasible under normal survey 
conditions, however, when the true distances would not be known and so the local 
gradient could not be calculated for each sighting. Under normal circumstances an 
average gradient would need to be used. 
 
Empirical Adjustment of α* 
 

A fitted α* value of 0.00175, intermediate between Eq. 3 and either the standard 
Bowditch value of αB or the αc adjustments for refraction, produced a minimum s2 of 
0.1152 for the combined ship data (Method #16 - Table 9). The difference between ships 
was evident in the effect of using this α* value. Reticle measurements from the Jordan 
tended to be overcorrected while those from the McArthur were undercorrected (Figure 
11). Fitting separate values for each ship resulted in α* values of 0.00179 for the Jordan 
and 0.00170 for the McArthur. These ship-specific values produced unbiased measures of 
distance using reticles (Fig. 12) for these data with an s2 of 0.1099 (Method #4 - Table 9). 
 

The s2 values after adjusting α* separately for the two ships were 0.0970 for the 
Jordan versus  0.1255 for the McArthur (Method #'s 5 and 6 in Table 9, respectively), 
reflecting the greater variability for the latter. McArthur measurements were made in 
rougher conditions, with Beaufort sea states from 2 -5 compared to 1 - 4 on the Jordan. 
When measurements from the same Beaufort states (2-4) on the two ships were compared 
the McArthur continued to be more variable (s2 = 0.1102 versus 0.0959). 
 
Correcting Distances Based on Regression 
 

Numerical corrections. For both regressions, the full model (Eq. 12) including a 
ship effect had substantially more support than the submodel without ship (∆AICc = 78.8 
for the distance regression and 12.1 for the target angle regression - Table 11). 
 

The first regression, predicting logarithm of distance from reticles from the 
logarithm of distance from radar (Fig. 13a), reduced the heteroscedasticity evident in 
Figure 6d (see residuals in Fig. 13b). Rearrangement of terms as described in Eqs. 10-12 
produced a corrected distance, Dc, of: 
 
                         Dc  = exp((dLH+0.01176-0.04873*ship-0.00550)/0.94958), (16) 
where 
dLH = logarithm of uncorrected distance calculated from Eq. 3. 
 

Rearrangement of regression coefficients for the alternative method of regressing 
the reticle angle instead of the distance produced the modified angle, θ m, of: 
 



 

17 

                                    θm = (θ - 0.00018 + 0.00011*ship)/0.99932. (17) 
 
The modified angle in Eq. 17 was then used in Eq. 3 to produce the modified distance 
from reticles. 
 

The s2 value using the adjusted distances from Eqs. 13 and 14 were 0.1106 and 
0.1119, respectively (Method #'s 7 and 13 - Table 9). The effect of the correction based 
on Eq. 16 was to remove the downward bias of unmodified Eq. 3 for the farthest 
distances (Figure 14). The θm angle method of Eq. 17 also improved the fit over 
uncorrected reticles, but not as well as Eq. 16. 
 

Explanatory regression models:  The 24 models representing subsets of Eq. 15 
were applied to the distances from reticles and Eq. 3, adjusted for refraction using 
average air temperatures and pressures and the fitted gradient. Motion codes were only 
recorded for 1070 of the measurements, so only these records could be compared among 
models using AICc scores. ∆AICc scores among the regression models ranged from 0 to 
98.6 (Table 12). AICc and AIC (the large-sample version of this score) values were 
nearly identical. Using either estimate of the distance between model and data produced 
similar results. 
 

The top seven models had from 4 to 9 coefficients (Table 13), and all included 
effects for ship, Beaufort, and an interaction between ship and Beaufort. The simplest of 
these, the 4-parameter model, was 6.2 ∆AICc above the model with the lowest score. The 
difference between the model with the lowest score and the second ranked model was 1.0 
∆AICc. Models with differences in AICc scores (∆AICc) within about 2 ∆AICc of one 
another have roughly comparable support (Burnham and Anderson 1998), so by this 
criterion, Models 1 and 2 were the best supported by the data of those considered. 
Differences in the distances from reticles produced by the seven top models were 
examined to determine the practical effect of adding variables to the simplest model on 
improving accuracy. 
 

Differences in the accuracy of distances from reticles produced among the top 
seven regression models were negligible, once any one of them was selected (Table 14). 
The difference between the measurements corrected only for refraction and those 
additionally adjusted by any of the regression models was larger than differences among 
models. The maximum difference between unadjusted distances from Eq. 3 and those 
adjusted for refraction was 0.28 km, with an average difference of 0.10 km. The 
maximum difference between Model 7 and refraction-adjusted distances was 0.56 km, 
averaging 0.12 km. But the maximum difference between the 6-parameter Model 1 and 
the 4-parameter Model 7 was only 0.25 km, averaging 0.03 km. Given the inherent 
variability in reticle measurements (Table 15), the point of diminishing returns appears to 
have been reached with Model 7. 
 

Model 7 was selected as the most practical of the seven models because of its 
relatively simple data needs. The adjusted distance, D, from the refraction-corrected 
distance from reticles, Drefract, using Model 7 was: 
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                         D = Drefract / (1.0138 - 0.0156*f - 0.0531*v + 0.0281*f*v), (18) 
 
with f and v defined as in Eq. 15 as Beaufort sea state and vessel, respectively. 
 

This model, applied to the refraction-corrected reticle measurements, improved 
the fit of reticles to radar (Figs. 15, 16, Method #1 - Table 9). The mean ratios of distance 
from reticles to radar for targets ± 0.5 km around each of distances 1 to 8 km approached 
1 as distances from reticles were adjusted, first for refraction, and then using Model 7 
(Table 15). These ratios provide values around which to center the confidence intervals 
for the given target distance in order to report both precision and accuracy for targets at 
those distances (Table 16). 
 

Table 16 summarizes the improvements in precision and accuracy in radial 
distances achieved with the adjustments for refraction both with and without the 
additional, ship-specific corrections. The left, "unadjusted" columns indicate the 95% 
confidence interval for a target at the given distance based on Eq. 3. This interval 
includes all the sources of bias and variability that were present during the tests. When 
the measurement process was unadjusted for any of these sources of error, the 95% 
confidence interval for an object at 8 km ranged from 5.6 to 9.0 km (mean = 7.1 km, 
from 8 km * 0.89 [Eq. 3 / radar ratio from Table 15]), using a continuous representation 
of the reticle scale. "Measurement error," at the right side of Table 16 is based on the 
0.0719 value of s1 from replicate measurements to a single target under the same set of 
conditions at a single place and time. This best-case value indicates that if all sources of 
non-random error were removed, a target at 8 km would be measured within the interval 
6.9 to 9.2 km (mean = 8.0 km) 95% of the time. The intermediate columns in Table 16 
show the improvements in accuracy achieved in measurements of radial distance using 
the adjustments discussed in this study. The 95% confidence intervals improve both in 
terms of precision and reduced bias (Fig. 16). 
 

DISCUSSION 
 

The objective of this study was to identify and adjust for systematic measurement 
errors of the angles and distances to sightings in SWFSC shipboard surveys that can 
produce bias in line-transect estimates of abundance. One step in this process was to 
recognize the amount of change required to have a practical effect on measurements of 
perpendicular distances, as opposed to effects that may be statistically significant but do 
not produce a meaningful correction to the measurements. 
 
 
 
 
Rounding of Horizontal Angles and Reticles 
 

The effect of the amount of rounding of horizontal angles and reticles found in the 
1998-2000 survey data on the final estimates of mammal density and abundance is 
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difficult to predict. The extent of rounding was much less than in the minke whale data 
for which Butterworth (1982) developed the smearing technique. In particular, rounding 
to perpendicular distance zero, which is known to be problematic (Buckland et al., 2001), 
was not apparent in the survey data. The rounding of horizontal angles was less than the 
precision obtainable by duplicate measurements, an indication that rounding might not 
produce an observable effect on the calculated frequencies, and that smearing was 
therefore not necessary. 
 

The actual estimates for 1998-2000 will be made for small subsets of the entire 
database examined here, for instance, eastern spinner dolphins in one sampling area for 
one year. Estimates based on these subsets may be more susceptible to small artifacts of 
data collection than apparent from the combined sightings over the entire the 3-year 
period. Comparison of the estimates produced from the original data and from smeared 
data provide a measure of the importance rounding has on the final estimates for a 
particular dataset. 
 
Radial Distances 
 

Modification of Eq. 3 is required if unbiased distances are to be obtained at all 
reticle values used during the surveys. The underestimate of near-horizon distances by 
the original equation would have a small but consistent positive bias on estimated density 
and abundance. About 6-7% of the sightings from the 1998-2000 surveys were recorded 
at each of 0.1, 0.2 and 0.3 reticles, distances for which the underestimate would be 
noticeable. Unadjusted reticle measurements would underestimate radial distance for 
about 20% of the 1998-2000 sightings by from 2 to 10%. 
 

Roughly half of the underestimate was correctable by incorporating the effects of 
refraction on reticle measurements into the distance calculations. Use of an average 
refraction term provided most of the bias reduction potentially obtainable by measuring 
air temperatures and pressures individually for each sighting. Refraction was insufficient 
to explain all of the underestimate of distances produced from reticles, however. 
Distances from reticles to near-horizon targets were less than expected from both ships 
based on ship height, refraction, and distance from radar, particularly on the McArthur. 
Refraction-corrected Jordan distances were closer to expectations. The underestimate on 
the McArthur comprised the bulk of the remaining difference between distances from 
reticles and radar for both ships combined, once refraction had been accounted for. The 
apparent difference between ships complicates the adjustment required to remove this 
final portion of bias. 
 

The method of empirically fitting the α* value for each ship separately to radar is 
one option for providing a ship-specific adjustment. For the McArthur, this produced the 
second greatest reduction in mean squared error of any adjustment method (Method #6 - 
Table 9). Using the same fitting technique with the Jordan performed less well.  As with 
all the numerical methods, it doesn't make use of the known effects of refraction, and 
there is a danger of overfitting artifacts in the data with constants that have no physical 
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interpretation. The regression models incorporating explanatory variables were selected 
over the numerical methods as the best adjustment approach. 
 

In addition to ship, Beaufort sea state, and their interaction, AICc indicated swell 
height, and a pairwise interaction between ship and swell, were significant variables. A 
limit to the usefulness of the adjustments to reticle measurements was reached, however, 
beyond which additional factors that were statistically significant provided little practical 
benefit. 
 

The McArthur was the more active of the two ships under similar sea conditions. 
The adjustment model indicated that distance from reticles increased with Beaufort on the 
McArthur, but not on the Jordan. If differences in ship responsiveness resulted in 
observers reading reticles differently as Beaufort sea state increased, for instance tending 
to read more at the top of a swell on the McArthur than on the Jordan, the effective 
height on the McArthur would increase and the results observed in the data would be 
obtained. Gordon (2001) discusses the opposite effect of ship rolling or heeling, which 
will result in distances being overestimated. This heeling effect was not apparent in our 
data, however. 
 

A final complicating issue that bears on extending the results of this study into the 
future is that stabilizers were added to the McArthur in 2001, greatly reducing its roll 
compared to the period when the data reported here were collected. Thus, adjustments for 
ship-specific differences in responsiveness may no longer apply. The adjustment for 
refraction, however, warrants consideration anytime distance measurements are to be 
made near the horizon with any angle-based device. 
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Table 1. Summary of field survey measurements. Types of horizontal angle and distance 
measurements recorded on-effort during SWFSC line-transect surveys from 1998 to 
2000. Measurements were obtained from a total of 4,307 sightings. 
 
Data type No. of Measurements 
25X horizontal angles 3,941 
25X vertical angles (reticles) 3,986 
25X reticles ≤ 2 reticles 2,791 
non-25X horizontal angles 365 
non-25X distances from reticles 321 

 
 
Table 2. Summary of radar target measurements indicating the numbers of replicated 
horizontal angles and reticles measured to a single target by different observers. A total 
of 1606 measurements were made of 551 individual targets. No horizontal angle 
measurements were recorded for 34 of the targets. 
 

Replicates/target Horizontal angles Reticles 
1 5 4 
2 45 45 
3 464 499 
4 1 1 
5 1 1 
6 1 1 

 
 
Table 3. Angle-distance formulas: D = distance in km, h = observer eye height in meters 
above sea level, θ = angle from horizon to target in radians, α = angle above horizon to 
horizontal tangent in radians. The Bowditch (1995) equation was modified from its 
original form expressing angle in terms of distance by rearranging terms. Observer 
height, (hf), is in feet, k1 = 6076.1 and k2 = 8268. 
 
Reference Formula 
  

Lerczak and Hobbs (1998) D = (6371+h/1000)sin(θ +α) - sqrt[ 63712 - ((6371 + h/1000)(cos(θ +α))2) ] 

Smith (1982) D = 1.852*(h/1852)tan(atan(89.173/sqrt(h/1852))-θ ) 

Buckland et al. (1993) D = (0.001h)/tan(acos(6371/(6371+(0.001h)))+θ) 

Bowditch (1995) D =1.852{tan(θ + α)k1k2 - sqrt[(-tan(θ + α)k1k2)
2-4hfk1k2]}/(2k1 ) 
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Table 4. 25X horizontal angle rounding and smearing of field survey data. Five-degree 
rounding test (Eq. 1). Autocorrelation coefficients and Z' scores of original angles and of 
angles smeared (Eq. 2) over ∆ρ = 2, 3, and 4 degrees (additional smearing at ∆ρ > 4 not 
shown). Statistics for smeared data are averages of 20 runs. Z' scores less than  -1.645, 
indicated by asterisks, represent 95% probability that 5 degree lags have higher 
autocorrelation than the tested lag (the original rounding spikes remain detectable). 
 
 original angles  ∆ρ = 2  ∆ρ = 3  ∆ρ = 4 
Lag r Z'  r Z'  r Z'  r Z' 
1 0.346 -4.500 * 0.817 0.782  0.769 -0.224  0.848 1.096 
2 0.544 -2.865 * 0.743 -0.460  0.782 -0.007  0.837 0.850 
3 0.503 -3.222 * 0.729 -0.662  0.754 -0.467  0.825 0.586 
4 0.320 -4.646 * 0.766 -0.124  0.748 -0.548  0.806 0.226 
5 0.782 0.000  0.773 0.000  0.783 0.000  0.794 0.000 
6 0.303 -4.745 * 0.717 -0.826  0.699 -1.205  0.752 -0.664 
7 0.385 -4.132 * 0.640 -1.736 * 0.641 -1.873 * 0.742 -0.824 
8 0.461 -3.525 * 0.624 -1.904 * 0.673 -1.523  0.727 -1.024 
9 0.173 -5.578 * 0.670 -1.403  0.617 -2.123 * 0.692 -1.461 

 
 
 
Table 5. Non-25X rounding and smearing of horizontal angles in the field survey data. 
Autocorrelation coefficients and Z' scores for 5-degree rounding of original angles, and 
of angles smeared over 2, 3, and 4 degrees. Statistics for smeared data are averages of 20 
runs. Z' scores indicated by asterisks represent 95% probability that 5 degree lags have 
higher autocorrelation than the tested lag. 
 
 original angles  ∆ρ = 2  ∆ρ = 3  ∆ρ = 4 
Lag r Z'  r Z'  r Z'  r Z' 
1 -0.134 -4.305 * 0.459 1.680  0.381 1.128  0.510 3.240 
2 -0.098 -4.058 * -0.059 -1.940 * 0.050 -1.172  0.310 1.656 
3 -0.098 -4.044 * -0.116 -2.311 * -0.063 -1.904 * 0.166 0.651 
4 -0.132 -4.253 * 0.113 -0.816  0.087 -0.926  0.086 0.125 
5 0.482 0.000  0.235 0.000  0.226 0.000  0.067 0.000 
6 -0.138 -4.273 * 0.053 -1.195  0.030 -1.286  0.023 -0.286 
7 -0.099 -4.000 * -0.168 -2.619 * -0.134 -2.341 * -0.013 -0.518 
8 -0.099 -1.478  -0.129 -2.355 * -0.105 -2.144 * -0.012 -0.510 
9 -0.126 -4.152 * 0.076 -1.036  0.046 -1.174  0.009 -0.370 
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Table 6. 25X reticle rounding and smearing in the field survey data for measurements ≤ 2 
reticles. Z' scores are for rounding at 0.2 reticles. Smeared values are averages of 20 runs. 
Z' asterisks indicate 95% probability that the tested lag had lower autocorrelation than the 
0.2 reticles of rounding. 
 

 original reticles  ∆ρ = 0.1 
Lag r Z'  r Z' 
0.1 0.323 -1.556  0.812 1.620 
0.2 0.669 0.000  0.565 0.000 
0.3 0.202 -1.935 * 0.460 -0.457 
0.4 0.429 -1.107  0.368 -0.802 
0.5 0.239 -1.763 * 0.485 -0.343 
0.6 0.503 -0.968  0.617 0.301 
0.7 0.298 -1.512  0.566 0.005 
0.8 0.300 -1.787 * 0.388 -0.825 
0.9 0.217 -1.707 * 0.320 -0.895 

 
 
 
Table 7. 25X reticle rounding and smearing in the field survey data for measurements at 
all reticle values. Autocorrelation coefficients for 25X reticles at all reticle values, with 
Z’ scores computed against 0.5 reticle lags. 
 
 original reticles  ∆ρ  = 0.1  ∆ρ  = 0.2  ∆ρ  = 0.3 
Lag r Z'  r Z'  r Z'  r Z' 
1 0.553 -1.805 * 0.884 2.315  0.887 2.363  0.920 3.521 
2 0.722 1.046  0.755 -1.717 * 0.761 -1.700 * 0.853 0.324 
3 0.505 -2.456 * 0.718 -2.497 * 0.720 -2.576 * 0.798 -1.361 
4 0.589 -1.265  0.728 -2.297 * 0.735 -2.277 * 0.811 -0.994 
5 0.667 0.000  0.820 0.000  0.824 0.000  0.843 0.000 
6 0.579 -1.416  0.802 -0.518  0.804 -0.578  0.861 0.653 
7 0.518 -2.271 * 0.745 -1.932 * 0.743 -2.084 * 0.832 -0.384 
8 0.490 -2.639 * 0.679 -3.247 * 0.678 -3.380 * 0.807 -1.131 
9 0.438 -3.276 * 0.718 -2.496 * 0.723 -2.503 * 0.801 -1.283 
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Table 8. Mean distances from radar to targets assigned to the given reticle values on the 
two ships, the distances from Eq. 3 for the angles these reticles represent given the ship's 
height, and numbers of measurements recorded. 
 
Reticle Mean Target Distance 

Assigned this Reticle 
from the Jordan 
(ht = 10.7 m) 

Eq. 3 
Jordan 
Distance 

NJORDAN Mean Target Distance 
Assigned this Reticle 
from the McArthur 
(ht. = 10.4 m) 

Eq. 3 
McArthur 
Distance 

NMcARTHUR 

0.1 8.0 8.0 42 8.9 7.8 39 
0.2 7.1 6.8 72 7.6 6.7 56 
0.3 6.4 6.1 68 6.9 6.0 66 
0.4 5.7 5.5 88 5.9 5.4 45 
0.5 5.4 5.1 63 5.5 5.0 32 
0.6 4.9 4.7 53 4.9 4.6 41 
0.7 4.7 4.4 41 4.4 4.3 22 
0.8 4.3 4.1 57 4.2 4.1 54 
0.9 4.1 3.9 26 3.9 3.8 18 
1.0 3.9 3.7 45 3.6 3.6 26 
1.1 3.6 3.5 18 3.7 3.5 12 
1.2 3.4 3.4 38 3.7 3.3 27 
1.3 3.2 3.2 9 3.0 3.1 15 
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Table 9. Improvements in accuracy achieved using the various adjustments to Eq. 3. Results of 11 adjustment methods are 
each reported in 3 ways: once representing the two ships combined, and once for each ship individually, for a total of 33 
sets ("Method #") of statistics. Table columns indicate: Terms estimated from the data; Equations used in addition to Eq. 
3; m = number of the measurements that were adjustable using the adjustment method; Eq. 3 s2 = root mean squared error 
between logarithms of distances measured by reticles and radar (Eq. 6) for the measurements that were adjustable using 
the adjustment method; Adjusted s2 = root mean squared error after adjustment; and the ratio of adjusted s2 to s2 from 
unmodified Eq. 3. Results for each method are sorted by decreasing ratio of adjusted to unadjusted s2 for the combined 
data, indicated in bold numbering (smaller ratios are better). 
 
Method 

# 
Adjustment and Ship(s): Terms Eqs. m1 Eq. 3 

s2 
Adjusted 

s2 
ratio 2 

1 Model 7 + Refraction: average temperature and pressure, fitted gradient, both ships αc, θc 8-11, 18 1576 0.1227 0.1075 0.88 
2 Model 7 + Refraction: average temperature and pressure, fitted gradient, Jordan αc, θc 8-11, 18 914 0.1002 0.0950 0.95 
3 Model 7 + Refraction: average temperature and pressure, fitted gradient, McArthur αc, θc 8-11, 18 662 0.1482 0.1228 0.83 
4 Empirical fit: ship-specific above-horizon angle = 0.00170 or 0.00179, both ships α*  662 0.1227 0.1099 0.90 
5 Empirical fit: ship-specific above-horizon angle = 0.00179, Jordan α*  662 0.1002 0.0970 0.97 
6 Empirical fit: ship-specific above-horizon angle = 0.00170, McArthur α*  662 0.1482 0.1255 0.85 
7 Regression: log-log distance coefficients, both ships Dc, b 13, 16 1576 0.1227 0.1106 0.90 
8 Regression: log-log distance coefficients, Jordan Dc, b 13, 16 914 0.1002 0.0997 0.99 
9 Regression: log-log distance coefficients, McArthur Dc, b 13, 16 662 0.1482 0.1241 0.84 
10 Refraction: average air temperature and pressure, standard gradient, both ships αc, θc 8-11 1576 0.1227 0.1114 0.91 
11 Refraction: average air temperature and pressure, standard gradient, Jordan αc, θc 8-11 914 0.1002 0.0973 0.97 
12 Refraction: average air temperature and pressure, standard gradient, McArthur αc, θc 8-11 662 0.1481 0.1284 0.87 
13 Regression: target angle adjustment, both ships θm, b 14, 17 1537 0.1219 0.1119 0.92 
14 Regression: target angle adjustment, Jordan θm, b 14, 17 914 0.1002 0.0993 0.99 
15 Regression: target angle adjustment, McArthur θm, b 14, 17 623 0.1481 0.1283 0.87 
16 Empirical fit: above-horizon angle = 0.00175, both ships α*  1576 0.1227 0.1152 0.94 
17 Empirical fit: above-horizon angle = 0.00175, Jordan α*  914 0.1002 0.1018 1.02 

                                                 
1  The total number of paired measurements was 1576, of which 914 were made from the Jordan and 662 were from the McArthur. 81 
measurements on both ships at 0.1 reticles were undefined when corrected using αB in Eq. 3. 39 measurements at 0.1 reticles were undefined for 
the McArthur ship height using the θm correction. 
2 The ratio of adjusted s2 to s2 from unmodified Eq. 3 indicates the improvement achieved using the adjustment method compared to unadjusted 
values for the same data.  



Table 9. Accuracy in distances using adjustment methods (continued) 
 
Method 

# 
Adjustment and Ship(s): Terms Eqs. m1 Eq. 3 

s2 
Adjusted 

s2 
ratio 1 
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18 Empirical fit: above-horizon angle = 0.00175, McArthur α*  662 0.1482 0.1316 0.89 
19 Refraction: average air temperature and pressure, fitted gradient, both ships αc, θc 8-11 1576 0.1227 0.1150 0.94 
20 Refraction: average air temperature and pressure, fitted gradient, Jordan αc, θc 8-11 914 0.1002 0.0961 0.96 
21 Refraction: average air temperature and pressure, fitted gradient, McArthur αc, θc 8-11 662 0.1482 0.1369 0.92 
22 Refraction: substituting Bowditch above-horizon angle into Eq. 3, both ships αB 7 1495 0.1265 0.1200 0.95 
23 Refraction: substituting Bowditch above-horizon angle into Eq. 3, Jordan αB 7 872 0.1003 0.1146 1.14 
24 Refraction: substituting Bowditch above-horizon angle into Eq. 3, McArthur αB 7 623 0.1481 0.1253 0.85 
25 Refraction: local air temperature and pressure, standard gradient, both ships αc, θc 8-11 1576 0.1227 0.1160 0.95 
26 Refraction: local air temperature and pressure, standard gradient, Jordan αc, θc 8-11 914 0.1002 0.1015 1.01 
27 Refraction: local air temperature and pressure, standard gradient, McArthur αc, θc 8-11 662 0.1482 0.1335 0.90 
28 Refraction: local air temperature and pressure, fitted gradient, both ships αc, θc 8-11 1576 0.1227 0.1174 0.96 
29 Refraction: local air temperature and pressure, fitted gradient, Jordan αc, θc 8-11 914 0.1002 0.0980 0.98 
30 Refraction: local air temperature and pressure, fitted gradient, McArthur αc, θc 8-11 662 0.1482 0.1399 0.94 
31 Unadjusted Eq. 3, both ships   1576 0.1227  1.00 
32 Unadjusted Eq. 3, Jordan   914 0.1002  1.00 
33 Unadjusted Eq. 3, McArthur   662 0.1482  1.00 
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Table 10. Temperature gradients estimated from fitting ∆T/∆h in Eq. 7 to minimize the 
differences in distances from reticles and radar (s2). Each series of N measurements was 
taken at the given water temperature, air temperature, air pressure, and ship. Sorted by 
∆T/∆h for each ship. 
 
Water temp Air temp Air press N ∆T/∆h 
David Starr Jordan 
24.6 21.5 1012.9 55 -0.049 
20.6 20 1011.3 54 -0.047 
30 31.5 1010.8 53 -0.046 
18.1 19 1017.4 46 -0.04 
20.5 20.2 1017.2 61 -0.039 
30.5 30 1008.7 39 -0.036 
19.2 19.5 1014 13 -0.031 
29.5 29.2 1012 56 -0.031 
29.2 27.5 1008 63 -0.023 
19.1 21.5 1013.8 63 -0.021 
30.2 29.8 1008 54 -0.013 
30.1 30 1011 60 -0.009 
26.7 24.5 1011.8 70 -0.008 
30.1 29.8 1012 114 0.008 
29.9 28.1 1011.8 23 0.01 
18.3 20.8 1017.5 90 0.029 
McArthur 
23.6 26.2 1013.8 42 -0.051 
31.4 31.1 1011.1 53 -0.014 
26.3 21 1015 47 -0.004 
26.5 27 1012.6 83 0.001 
23.6 25 1012.9 30 0.002 
24.8 24.2 1013.1 39 0.006 
24.4 26.1 1011.6 102 0.009 
31 30.9 1010.5 53 0.011 
24.3 24 1012.8 23 0.012 
12.5 15.7 1019.1 54 0.013 
28.3 30.2 1009.7 48 0.024 
23.6 26.5 1013.2 16 0.034 
28.3 29 1008.4 60 0.045 
27.9 26.9 1009.9 12 0.052 

 
Table 11. Regression equations and coefficients used in numerical methods for correcting 
distances from reticles. dLH = logarithm of reticle-based distance from Eq. 3; d = 
logarithm of distance from radar; θ = empirical reticle angle; θT = theoretical angle below 
horizon for given target distance, solved numerically from Eq. 3. ∆AICc is calculated for 
the model with and without ship. 
 
Regression equation: b0 b1 b2 ∆AICc 

dLH = b0  + b1 * d + b2 * ship -0.01176 0.94958 0.04873 78.8 
θ = b0 + b1 * θT + b2 * ship 0.00018 0.99932 -0.00011 12.1 
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Table 12. ∆AICc scores for 24 regression models. The ratio of refraction-corrected 
distance from reticles (average temperature and pressure, temperature gradient = -0.02) to 
distance from radar was the dependent variable. The independent variables were: v = 
vessel category (1=DSJ); f = Beaufort; w = swell height; m1 = motion category (1 = 
trough); m2 = motion category (1 = upswell). The root squared sum of residuals (SRE = 

SSR / df ), and the AICc values were calculated based on the 1070 records that included 
the independent variables required by all models. 
 
Model 
ID 

∆AICc SRE df Model 

1 0.0 0.1038 1064 b0+b1*w+b2*f+b3*v+b4*f*v+b5*w*v 
2 1.0 0.1037 1061 b0+b1*w+b2*f+b3*v+b4*m1+b5*m2+b6*f*v+b7*w*f+b8*v*w 
3 2.1 0.1039 1064 b0+b1*w+b2*f+b3*v+b4*f*v+b5*w*f 
4 3.1 0.1039 1063 b0+b1*w+b2*f+b3*v+b4*f*v+b5*w*f+ b6*v*w 
5 5.1 0.1040 1063 b0 + b1 * v + b2 * f + b3 * f * v + b4 * m1 + b5 * m2 + b6 * w 
6 5.2 0.1041 1065 b0+b1*w+b2*f+b3*v+b4*f*v 
7 6.2 0.1042 1066 b0 + b1 * f + b2 * v + b3 * f *  v 
8 8.2 0.1042 1064 b0 + b1 * v + b2 * f + b3 * f * v + b4 * m1 + b5 * m2 
9 17.5 0.1048 1067 b0 + (b1 + b2 * v) * f 
10 28.7 0.1053 1066 b0+b1*w+b2*f+b3*v 
11 29.7 0.1054 1067 b0 + b1 * f + b2 * v 
12 32.7 0.1055 1066 b0 + (b1 + b2 * v) * w + b3 * f * w 
13 33.7 0.1056 1067 b0 + (b1 + b2 * v) * w 
14 33.7 0.1055 1065 b0 + b1 * f + b2 * v + b3 * m1 +  b4 * m2 
15 35.8 0.1057 1067 b0 + b1 * w + b2 * v 
16 35.8 0.1056 1065 b0 + (b1 + b2 * v) * w + b3 * m1 + b4 * m2 
17 36.8 0.1058 1068 b0 + b1 * v 
18 38.8 0.1058 1066 b0 + b1 * v + b2 * m1 + b3 * m2 
19 39.8 0.1058 1065 b0 + b1 * v + b2 * w + b3 * m1 + b4 * m2 
20 89.8 0.1083 1065 b0 + b1 * w  + b2 * f + b3 * m1 + b4 * m2 
21 90.7 0.1085 1068 b0 + b1 * f 
22 92.7 0.1085 1066 b0 + b1 * f  + b2 * m1 + b3 * m2 
23 96.6 0.1088 1068 b0 + b1 * w 
24 98.6 0.1088 1066 b0 + b1 * w + b2 * m1 + b3 * m2 

 
Table 13. Regression coefficients for the 7 top AICc - ranked models from Table 12. 
Regression coefficients for Models 2 and 5 were based on the 1070 records that included 
motion codes. Coefficients for Models 1, 3, 4, 6, and 7 were based on the full database of 
1576 records. 
 
Model ID b0 b1 b2 b3 b4 b5 b6 b7 b8 

1 1.0201 -0.0020 -0.0149 -0.0914 0.0281 0.0122    
2 1.2047 -0.0102 -0.0473 -0.2933 0.0111 -0.0115 0.0662 0.0005 0.0207 
3 0.9618 0.0137 -0.0075 -0.0410 0.0265 -0.0023    
4 1.1051 -0.0235 -0.0328 -0.1502 0.0345 0.0045 0.0232   
5 1.1161 -0.1895 -0.0429 0.0614 0.0152 0.0037 0.0048   
6 0.9921 0.0070 -0.0181 -0.0534 0.0311     
7 1.0138 -0.0156 -0.0531 0.0281      
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Table 14. Maximum and mean absolute differences in distances (km) produced by the top 
seven explanatory regression models, the refraction-adjusted (using average temperature 
and pressure and the fitted gradient) measurements, and distances from unadjusted Eq. 3. 
Models correspond to Models 1 to 7 in Tables 12 and 13. 
 
Models Compared Max. (absolute) 

difference 
Avg. (absolute) 
difference 

Refraction adjusted - unadjusted eq. 3 0.28 0.10 
Model_7 - refraction adjusted eq. 3 0.56 0.12 
Model_7 - Model_6 0.17 0.03 
Model_6 - Model_5 0.19 0.04 
Model_5 - Model_4 0.25 0.06 
Model_4 - Model_3 0.15 0.02 
Model_3 - Model_2 0.20 0.05 
Model_2 - Model_1 0.23 0.04 
   
Model_7 - Model_1 0.25 0.03 
Model_1 - refraction adjusted eq. 3 0.58 0.13 
 
 
 
Table 15. Mean ratios of calculated distance (unadjusted and adjusted by two methods) to 
distance from radar for targets ± 0.5 km around the given midpoint distance. N = number 
of targets measured in the interval around the given midpoint. The refraction adjustment 
used average air temperatures and pressures and the fitted temperature gradient. The final 
adjustment applied Model 7 to these distances. Bias, the expected overestimate or 
underestimate in meters for distances calculated to a target at the given distance, is 
reported for each method. 
 

  Equation 3 Refraction-adjusted Final-adjusted 
Midpoint 
(km) 

N Eq. 3/ 
Radar 

bias (m) Adj./Radar bias (m) Adj./Radar bias (m) 

1 146 0.97 -30 0.98 -20 1.00 0 
2 209 0.99 -20 1.00 0 1.03 60 
3 245 1.00 0 1.02 60 1.04 120 
4 249 0.98 -80 1.00 0 1.02 80 
5 234 0.95 -250 0.98 -100 0.99 -50 
6 205 0.93 -420 0.96 -240 0.98 -120 
7 136 0.91 -630 0.94 -420 0.96 -280 
8 88 0.89 -880 0.92 -640 0.94 -480 
        
All Distances 1512 0.95 -50 0.97 -30 1.00 0 
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Table 16. 95% confidence intervals (Eq. 4) for targets at the given distances, including 
bias. Target distances in the first column were multiplied by the ratios from Table 15 for 
each distance and method to calculate the mean around which the confidence interval was 
centered. Confidence intervals were calculated from: "Unadjusted" = Eq. 3; "Refraction-
adjusted" = reticle measurements adjusted for average refraction (with temperature 
gradient = -0.02); "Final" = adjusted both for refraction and ship-specific (Model 7) 
differences; "Measurement error" = ideal precision (no bias) based on simultaneous 
measurements to single targets. 
 

 
 

Distance 
(km) 

Unadjusted 
s2 = 0.1227 

(Method # 31, 
Table 9) 

 

Refraction-adjusted 
s2 = 0.1150 

(Method #19, 
Table 9) 

 

Final 
s2 = 0.1075 

(Method #1, 
Table 9) 

 

Measurement Error 
s1 = 0.0719 

(Equations 4, 5) 
 
 

 lower 
95% 

upper 
95% 

lower 
95% 

upper 
95% 

lower 
95% 

upper 
95% 

lower 
95% 

upper 
95% 

1.0 0.8 1.2 0.8 1.2 0.8 1.2 0.9 1.2 
2.0 1.6 2.5 1.6 2.5 1.7 2.5 1.7 2.3 
3.0 2.4 3.8 2.4 3.8 2.5 3.9 2.6 3.5 
4.0 3.1 5.0 3.2 5.0 3.3 5.0 3.5 4.6 
5.0 3.7 6.1 3.9 6.1 4.0 6.1 4.3 5.8 
6.0 4.4 7.1 4.6 7.2 4.8 7.3 5.2 6.9 
7.0 5.0 8.1 5.2 8.2 5.4 8.3 6.1 8.1 
8.0 5.6 9.0 5.8 9.2 6.1 9.3 6.9 9.2 
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Figure 1a                                                        Figure 1b 

 
Fig. 1. Horizontal sighting angles recorded during 1998-2000 line-transect surveys using: 
(a) angle rings at the base of 25X binoculars, and (b) non-25X sighting angles using 
unaided eye or 7X binoculars. Angles right or left of the trackline are combined in a 
single bin. 
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Figure 2a                                                          Figure 2b 

 
 
Fig. 2. Autocorrelation coefficients for horizontal angle frequencies at 1 degree lags. 
Points with standard error bars indicate autocorrelation of original 25X measurements. 
Dotted lines connect measurements smeared over ±2 degrees (∆ρ = 4, error bars not 
shown). 25X coefficients are reported in Table 3 and non-25X coefficients are from 
Table 4.  Smeared values are averages of 20 runs. (a) original 25X angles (from Fig. 1a); 
and (b) non-25X angles (Fig. 1b). 
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Figure 3a                                                            Figure 3b 

 
Fig. 3. 25X reticle values recorded during 1998-2000 line-transect surveys in the eastern 
tropical Pacific ocean: (a) all reticles; (b) reticles ≤ 2. 
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Figure 4a                                              Figure 4b 

 
Fig. 4. Autocorrelation coefficients for 25X reticles, lagged at 0.1 reticles. Points with standard 
error bars indicate autocorrelation of original reticle measurements. Dotted line connects reticle 
values smeared at ±0.05 reticles (∆ρ = 0.1). (a) all reticle values; and (b) reticles ≤ 2. 
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Fig. 5. Distribution of 25X binocular reticle values assigned by observers to targets 
versus the distances from radar to the targets. 
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Fig. 6a                                                        Fig. 6b 
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Fig. 6c                                                        Fig. 6d 

 
 
Fig. 6. Angle-to-distance conversion formulas from Table 3 applied to reticle values 
versus distances from radar. Dotted lines indicate 1:1 line for unbiased reticle estimates 
of distance. (a) Smith (1982); (b) Buckland et al. (1993); (c) Bowditch (1995); (d) 
Lerczak and Hobbs (1998) (Eq. 3). 
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Fig. 7a                                                        Fig. 7b 

 
Fig. 7. Differences between ships in the fit of Eq. 3 distances to radar. (a) Jordan; (b) 
McArthur. 
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Fig. 8a                                                            Fig. 8b 

 
Fig. 8. Ratios of Eq. 3 distances to radar. (a) Jordan (b) McArthur. 
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Fig. 9a                                                            Fig. 9b 

 
Fig. 9.  Effect of adjusting reticle measurements for local refraction, and comparison of 
unadjusted to adjusted distance ratios of local vs average refraction. All calculations used the 
standard temperature gradient. (a) Distances adjusted based on local air temperatures and 
pressures in Eqs. 8-11 against distances from radar, both ships combined, and; (b) range of 
local refraction effects versus average refraction effects on the ratio of Eq. 3 distance to 
refraction-corrected distance. The lower dotted line indicates the unadjusted/adjusted ratio 
for the lowest air densities, produced from the combination of the highest measured air 
temperatures (32 deg) and lowest measured pressures (1008 mb); the upper dotted line 
indicates the ratio for the highest air densities, produced from the lowest temperatures (15 
deg) and highest pressures (10019 mb); and the solid line indicates the ratio using average 
temperatures (25 deg) and pressures (1012 mb). 
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Fig. 10a                                                            Fig. 10b 

 
Fig. 10.  (a) Distances obtained by replacing α in Eq. 3 with αB from Eq. 7 (Bowditch 1995). 
Points lying along the x-axis at about 7-10 km represent reticle values of 0.1, which were 
undefined using this method. (b) Distances adjusted for refraction using average air 
temperatures and pressures and standard temperature gradient. 
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Fig. 11. Corrected distances against distances from radar using α* = 0.00175 for both 
ships in Eq. 3. Jordan values (every other horizontal line of points starting with the top 
line) tend to be overcorrected, while the McArthur values (starting with the second line 
from the top) remain undercorrected. 
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Fig. 12a                                                            Fig. 12b 

 
Fig. 12. Distances from reticles using ship-specific α* values in Eq. 3 versus radar.  (a) 
Jordan with α* = 0.00179, and; (b) McArthur with α* = 0.00170. 
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Fig. 13a                                                            Fig. 13b 

 
Fig. 13. (a) Logarithm of distance using Eq. 3 against logarithm of distance from radar. 
(b) Residuals from log-log regression (Eq. 12) based on relationship in Fig. 13A. 
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Fig. 14. 25X distances from reticles against distances from radar using non-explanatory 
regression-based correction method (Eq. 16). 
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Fig. 15a                                                        Fig. 15b 

 
Fig. 15. Distance from reticles against distance from radar for the final regression model 
(Eq. 18), using refraction-corrected (average air temperature and pressure, fitted 
temperature gradient) distances. (a) Jordan (b) McArthur. 
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Fig. 16. 95% confidence intervals from Table 16 for measurements of distance using 
reticles. The dotted 1:1 line shows indicates exact measurement without variance or bias. 
Accuracy and precision of distance measurements using reticles under field conditions 
are shown for unadjusted Eq. 3, refraction-only adjustment, and the final refraction + 
Model 7 adjustment. 
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Appendix A.  Responses to comments by reviewers from the Center for Independent 
Experts.   
 

On October 15-17, 2001, two reviewers from the Center for Independent Experts, 
Drs R. Mohn and P. Medley, read and made comments on an earlier version of this 
manuscript. Both agreed that the methods were sound and should improve the accuracy 
of perpendicular distances. Medley in addition expressed general support for corrections 
based on well-known physical effects (such as refraction) over regression-based 
adjustments to the distance measurements, but also expressed some concern that the data 
used for the refraction corrections were not available for all years. Following these 
reviews, we further developed the methodology of adjusting for refraction effects based 
on average temperatures and pressures and the fitted temperature gradient for the eastern 
tropical Pacific region. This enabled us to adjust all measurements in all years for the 
refraction component of the slight underestimate of distance using reticles. These 
developments were incorporated into the final estimates as described in this paper. 
 


